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Abstract

Current auxiliary learning methods mainly adopt the methodology of reweighing
losses for the manually collected auxiliary data and tasks. However, these methods
heavily rely on domain knowledge during data collection, which may be hardly
available in reality. Therefore, current methods will become less effective and even
do harm to the primary task when unhelpful auxiliary data and tasks are employed.
To tackle the problem, we propose a joint data-task generation framework for
auxiliary learning (DTG-AuxL), which can bring benefits to the primary task by
generating the new auxiliary data and task in a joint manner. The proposed DTG-
AuxL framework contains a joint generator and a bi-level optimization strategy.
Specifically, the joint generator contains a feature generator and a label generator,
which are designed to be applicable and expressive for various auxiliary learning
scenarios. The bi-level optimization strategy optimizes the joint generator and the
task learning model, where the joint generator is effectively optimized in the upper
level via the implicit gradient from the primary loss and the explicit gradient of
our proposed instance regularization, while the task learning model is optimized in
the lower level by the generated data and task. Extensive experiments show that
our proposed DTG-AuxL framework consistently outperforms existing methods
in various auxiliary learning scenarios, particularly when the manually collected
auxiliary data and tasks are unhelpful.

1 Introduction

Auxiliary learning aims to improve the model generalization ability on the primary task with the help
of related auxiliary tasks [1, 2]. This learning paradigm has been widely adopted and has shown its
effectiveness in various areas, like image classification [3], recommendation [4] and reinforcement
learning [5, 6]. Different auxiliary tasks are often chosen manually according to the primary task,
e.g., [7] utilize the task of visual attribute classification to help the fine-grained bird classification and
[4] improve the click conversion rate prediction with the help of click-through rate prediction task.

Most existing works utilize the auxiliary information by first reweighing the losses of the auxiliary
data and tasks, and then use the sum of the weighted losses together with the primary loss to optimize
the task learning model. The weights are employed to balance the primary loss and the auxiliary
losses to avoid negative auxiliary transfer, which are tuned with HPO tools [4, 3, 8]. More recent
works [9, 6, 10, 1, 11] propose to dynamically weigh different auxiliary losses during training.

However, the existing methods require that there exists beneficial information in the auxiliary data
and tasks, so that the beneficial loss terms can be selected through the loss reweighing process. This
condition cannot always be satisfied because whether the auxiliary data or task is beneficial depends
on many factors including the chosen auxiliary task, the scale of primary task dataset and the selected
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learning model for the tasks [1, 11], making it difficult to manually collect the beneficial auxiliary
data and task via prior knowledge. Therefore, existing approaches may adopt useless auxiliary
information and finally do harm to the primary task when the involved auxiliary data and tasks are
improperly collected, as observed in [1, 12]. Although [2] propose to generate fine-grained auxiliary
classification tasks, this method can be only applied to the classification primary task. Additionally,
they only generate the new task without considering new data, while the data-level information is
pointed out to be an important factor in auxiliary learning [11].

To address the problem, in this paper, we propose to simultaneously generate the auxiliary data
and task for auxiliary learning in a joint manner. However, there are three challenges for the joint
generation. First, it is challenging to design a generic framework that can accommodate various tasks
with different inputs. This is because the types of data and tasks are quite diversified in different
auxiliary learning scenarios, e.g., the primary task of image classification takes visual images as input
and outputs categorical labels for classification [7], while the primary task of rating prediction for
recommendation takes tabular data as input and outputs numeric labels for regression [4]. Second, it
is challenging to develop a generation framework that is expressive enough to produce beneficial data
and tasks for the primary task. Finally, to guarantee the jointly generated auxiliary data and task are
beneficial to primary task, how to effectively optimize the parameters in the generation framework is
a challenging problem as well.

To tackle these challenges, we propose a joint Data-Task Generation framework for Auxiliary
Learning (DTG-AuxL), which involves a joint generator and a bi-level optimization strategy. Specif-
ically, the joint generator consists of a feature generator and a label generator, which generates
the new auxiliary data and new task based on the existing manually collected data and tasks. The
data generation process is conducted in the feature space so that it can accommodate various input
types, while the label generator architecture is inspired by the model in recommendation which can
accommodate both categorical labels for classification and numeric labels for regression. Moreover,
we introduce nonlinear interaction terms in the joint generator, making it more expressive to produce
beneficial auxiliary data and tasks. To effectively optimize the joint generator and the task learning
model, we propose the bi-level optimization strategy with instance regularization. In the lower
optimization, the task learning model is optimized by the generated auxiliary data and task. In the
upper optimization for the joint generator, we not only utilize the implicit gradient from the primary
loss but also the explicit gradient from the proposed instance regularization, to avoid label generation
mode collapse. Extensive experiments show that DTG-AuxL outperforms existing methods in various
auxiliary learning scenarios, especially when the manually collected auxiliary data and task are
unhelpful to the primary task. We summarize our contributions as follows,

• We propose to simultaneously generate auxiliary data and tasks in a joint manner in auxiliary
learning for the first time, to the best of our knowledge.

• We propose DTG-AuxL, a joint data-task generation framework applicable in various
auxiliary learning scenarios, containing a joint generator and a bi-level optimization strategy.

• Extensive experiments in various auxiliary learning scenarios demonstrate the superiority of
our proposed DTG-AuxL framework. We further analyze when and how DTG-AuxL works
to bring performance boost.

2 Related Work

Auxiliary Learning The most widely adopted way in auxiliary learning is to combine the loss
of the primary task and the losses of the auxiliary tasks in a linear way [3, 7, 4, 5], where the
linear weights are tuned manually or with HPO methods. More recent works [9, 6, 10] propose
to automatically assign dynamic weights to the auxiliary losses. [9] propose to assign weights to
each loss based on the cosine gradient similarity between the primary loss and each auxiliary loss.
Later work [10] aims to make the weighted auxiliary gradient sum closest to the gradient of the
primary loss. [13, 1] utilize the bi-level optimization strategy to learn the auxiliary weights, where
[1] even propose to combine the losses not only limited to a linear form, but also a nonlinear form.
[11, 14] point out that only considering the task-level information is not sufficient, so they jointly
consider the weights of different tasks and different data samples within the same task through a
joint selector. As aforementioned, these reweighing methods will easily fail to bring improvement
when the chosen auxiliary tasks and data are unhelpful. There are also works [2, 1] that generate
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Figure 1: The overall DTG-AuxL framework. In the model design part, the joint generator contains
a feature generator and a label generator. The feature generator utilizes the primary and auxiliary
features to generate the new auxiliary feature fg,j , whose label ŷg,j is generated by the label generator
by combining the information of all the auxiliary and primary labels. The optimization part shows
that we optimize the task learning model and the joint generator in an alternating bi-level manner.

fine-grained classification auxiliary tasks for the primary classification task. However, they can only
be applied to a classification problem. Additionally, they only generate auxiliary tasks without new
data, limiting their performance especially when the data of the primary task is inadequate, which is
an often encountered scenario in auxiliary learning [9, 1].

Multi-task learning Multi-task learning aims to share information among tasks to improve model
performance. However, the goal of multi-task learning is to obtain good performance for all the
tasks, while auxiliary learning only focuses on the primary task. Multi-task learning methods can be
categorized into three parts [15]: multi-task architecture design [16, 17], multi-task optimization [18,
19] and multi-task relationship learning [20], where the multi-task optimization methods involve
techniques for optimizing several losses, like loss reweighing [18] and gradient modulation [21] .

3 The Proposed Method

The overall DTG-AuxL framework is shown in Figure 1. Next, we give the problem formulation,
describe the designs of the joint generator, and present the proposed bi-level optimization strategy.

3.1 Preliminaries and Problem Formulation

In auxiliary learning, we have one primary task Tp, and totally K auxiliary tasks {Tai}Ki=1.
Each of these tasks has its corresponding training dataset, including the primary dataset Dp =

{(xp,j , yp,j)}
|Dp|
j=1 , and the dataset for each auxiliary task Dai = {(xai,j , yai,j)}|Dai|

j=1 , where | · |
denotes the data sample number of the dataset. If the auxiliary tasks share the same input with the
primary task, which is a widely encountered and studied scenario in previous works [11, 1, 9, 10],
we have xai,j = xp,j and |Dai| = |Dp|. Besides the datasets, we have a task learning model
parameterized by θ which is used to learn all the tasks together. There is also a validation dataset
Dv which is used to evaluate the model performance on the primary task. With these notations, the
widely adopted training objective of auxiliary learning is:

Lt(θ) = Lp(Dp; θ) +

K∑
i=1

wi · Lai(Dai; θ), (1)

where Lp and Lai indicate the loss functions of the primary and each auxiliary task. Current
reweighing methods focus on how to decide wi so that the task learning model θ can achieve the best
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performance on Dv . However, as aforementioned, the terms Lai(Dai, θ) are defined by the manually
collected auxiliary data and tasks, with no guarantee to bring benefits for the primary task. Therefore,
we propose to simultaneously generate the new beneficial auxiliary data and task in a joint manner,
with the following training objective:

Lt(θ, ϕ) = Lp(Dp; θ) +

K∑
i=1

wiLai(Dai; θ) + wgLg(Dg(ϕ); θ), (2)

where the last term is the loss on the generated auxiliary data and task. Dg(ϕ) = {xg,j , ŷg,j}
|Dg|
j=1 is

the generated dataset which contains the new data together with the new label defining the new task,
and ϕ denotes the parameters of the joint generator that are used to generate Dg . Since we only care
about the performance of the primary task in auxiliary learning, we keep Lg the same loss function
as Lp, which can be cross entropy or MSE loss, etc. Note that we still keep the original auxiliary loss
terms in our training objective, so that it can accommodate the scenario where the existing manually
collected auxiliary data and tasks are beneficial. The task weights wi and wg are also learnable, which
will be optimized together with the generator parameters, and we uniformly denote them all as ϕ for
convenience. Next, we discuss the details of the generator and how we optimize ϕ and θ.

3.2 Joint Generator Design

The joint generator involves a feature generator to generate new features and a label generator to
generate a new task for the new feature, as shown in the Model Design of Figure 1.

3.2.1 Feature Generator

Since we expect that our data generator can tackle different types of data, a neat and elegant solution
is to conduct the generation process in the feature space. In the feature space, different types of
input data are transformed to vectors, so we can tackle these vectors in a unified way. Specifically,
for the input from different tasks [xp,j , xa1,j , · · · , xaK,j ], the task learning model will first map
them to the feature space with an encoder which is generally noted as “backbone”, and then use
different task-specific heads to tackle each of the tasks. We generate the new features based on the
features extracted via the backbone. In another word, the input of the feature generator is a feature list
[fp,j , fa1,j , · · · , faK,j ], where fp,j = fbackbone(xp,j ; θ) is a d-dimension feature. We next describe
how the new features are generated.

Feature linear term. A natural way to generate new features is to combine different features with
linear masks. We assign an individual feature mask to each of the K+1 features, i.e., we have a mask
list [mp,ma1, · · · ,maK ], where each mask is a d-dimension vector. Then, we denote the subscript
set for the task IDs {p, a1, · · · , aK} as S, and the linear combination is conducted as follows:

fgl,j =
∑
i∈S

m̂i ∗ fi,j , m̂i[k] =
emi[k]∑

j∈S emj [k]
, k = 1 · · · d, (3)

where gl indicates “generated linearly”, ∗ means the element-wise multiplication, and m̂i is the
normalized mask. mi[k] is the kth element of the mask mi, and is normalized by softmax with the
elements in the same dimension in other masks. This linear combination with normalized mask works
as feature selection from all the input features, and then combines them into a new one.

Feature nonlinear term. To make the generated features more expressive, we introduce an MLP
(Multi-Layer-Perceptron) to capture the nonlinear feature interaction:

fgn,j = MLPF ([fp,j ; fa1,j ; · · · ; faK,j ]), (4)

where gn indicates “generated nonlinearly”. All the features are concatenated together and the
nonlinear feature interactions are modeled by an MLP, whose output dimension is d. Finally, the
generated feature is the sum of the linear and nonlinear term, i.e., fg,j = fgl,j + fgn,j .

3.2.2 Label Generator

The label generator aims to generate a proper label for the feature produced by the feature generator.
We use the labels of all the input data as the input of the label generator to make the generated label
expressive enough, i.e., the input of the label generator is a list of labels [yp,j , ya1,j , · · · , yaK,j ].
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However, this label list may contain both numeric labels (if the corresponding task is regression) and
categorical labels (if the corresponding task is classification). How to utilize different types of label
information to generate a new label is the key problem. Inspired by the CTR (click-through rate)
model in recommendation [22, 23], which predicts the user’s preference towards an item also based
on both their numeric and categorical features, we design the label generator with both linear terms
and deep nonlinear terms similar to those in the CTR model.

Label linear term. The linear term models the direct and independent relationship between each
input label and the generated label. We simply keep the dimension of the generated label the same as
the primary label yp,j and more adaptive ways to choose the dimension can be an interesting future
work. Here, we assume that the dimension of yp,j is m, where m = 1 if the primary task Tp is
regression, or m equals to the number of the total categories if Tp is classification. If the primary
task is regression, the generated label is also a scalar value for regression, while if the primary task
is classification, the generated label is an m-dimension probability distribution vector. Specifically,
for each task ID i ∈ S, if Ti is a classification task and it has totally di categories, there is an
embedding table Ei with dimension di ×m for this task. We directly map the label yi,j in task Ti to
its m-dimension embedding space through the embedding table:

ygl,i,j = Ei(yi,j). (5)

If Ti is a regression task, we follow [23] to map yi,j to its m-dimension embedding. Specifically, we
also have an embedding table Ei for this task Ti, whose dimension is di ×m, where di = H is a
hyper-parameter which is fixed to 10 in our experiments. Then yi,j is mapped into the m-dimension
embedding space as follows:

ci,j = Softmax(Linear(yi,j)), ci,j ∈ RH , ygl,i,j =

H∑
k=1

ci,j [k]Ei[k], (6)

where the numeric label yi,j is linearly transformed to a H-dimension vector ci,j , which is used to
weigh all the embeddings in the embedding table to obtain the final embedding. Then the final label
linear term is obtained by the sum of all the input label embeddings ygl,j =

∑
i∈S ygl,i,j .

Label nonlinear term. In addition to the label linear term capturing how each input label indepen-
dently influences the final generated label, we also propose a nonlinear term to model the influence of
more complex label interactions on the generated label. Specifically, we introduce another group of
embedding tables for all the input tasks {ENi}i∈S , where the ways to obtain the embeddings of the
categorical and numeric labels are the same as eq. (5) and eq. (6), respectively. The dimension of
ENi is di ×mn, where di equals to the number of total categories if Ti is classification. di equals to
H (i.e.,10) for regression task, and mn is a hyper-parameter. With these embedding tables, we can
map all the input label list [yp,j , ya1,j , · · · , yaK,j ] to an embedding list [ep,j , ea1,j , · · · , eaK,j ]. Then
the nonlinear label interactions are captured through an MLP:

ygn,j = MLPL([ep,j ; ea1,j ; · · · ; eaK,j ]). (7)

The final generated label for the generated feature fg,j is the sum of the linear and nonlinear terms,

yg,j = ygl,j + ygn,j . (8)

Label bias term. Besides the linear and nonlinear terms, we also introduce a label bias term that
guides the generated label to possess similar semantic meaning to the label from the target primary
task, yp,j . As such, we add yp,j as the label bias term as follows,

ŷg,j = αyp,j + (1− α) ∗ norm(yg,j), (9)

where α ∈ (0, 1) is a learnable parameter initialized as 0.5 and norm(·) is the normalization function.
If the primary task is classification, norm(·) will be softmax(·) and yp,j will be converted to
the one-hot form. If the primary task is regression with range (a, b), then norm(·) is set to be
(b− a)sigmoid(·) + a. This bias term makes the generated label lie in the same space as the original
label, enabling us to more conveniently explore its semantic meaning, which is also verified to
improve model performance in our experiments.

3.2.3 Discussion about the Share Input Scenario

The proposed generator can generate the new feature by combining the features from the primary and
auxiliary tasks. However, in the most widely studied auxiliary learning scenario [9, 1, 11], all the
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tasks share the same input data. We only have the training dataset {(xp,j , yp,j , ya1,j , · · · , yaK,j)}
|Dp|
j=1 .

Therefore, we cannot obtain the auxiliary data [xa1,j , · · · , xaK,j ] from the auxiliary tasks to conduct
the feature generation. To tackle this problem, we obtain the new auxiliary data by randomly
sampling another data sample in the dataset, which is easy to implement with randomly shuffling
the training batch to match another sample for the original sample. Specifically, for a sample
(xp,j , yp,j , ya1,j , · · · , yaK,j), we consider another sample (xp,j2, yp,j2, ya1,j2, · · · , yaK,j2) in the
dataset to provide new auxiliary data information. The input of the feature generator is [fp,j , fp,j2],
which are the features extracted by the backbone with [xp,j , xp,j2] as input. When generating new
labels, we need to combine all the existing labels of the two samples, i.e., the input of the label
generator is [yp,j , ya1,j , · · · , yaK,j , yp,j2, ya1,j2, · · · , yaK,j2], and then the label generation process
is the same as before. Note that there are two small details: i) During the label embedding process,
yai,j and yai,j2 share the same embedding table, because they both belong to the same task. ii) For
the bias term in eq. (9), we now have two labels from the primary task, yp,j and yp,j2, and then eq. (9)
can be adjusted to:

ŷg,j = α(βyp,j + (1− β)yp,j2) + (1− α) ∗ norm(yg,j), (10)

where β ∈ (0, 1) is a learnable parameter of the generator. Till now, we have described the designs
of the joint generator, which is applicable in various auxiliary learning scenarios. However, the
generator has several parameters to be optimized, like the masks and MLPs. We denote all the
learnable parameters in the generator together with the task weights wi in eq. (2) as ϕ. Next, we will
elaborate how we optimize the task learning model parameters θ and the generator parameters ϕ.

3.3 Optimization Strategy

Bi-level optimization. In our whole framework, the task learning model parameters θ are expected
to minimize the loss of all the selected and generated tasks, while the generator parameters ϕ aim to
make θ achieve the best performance on the primary task. These two different goals give rise to the
following bi-level optimization problem:

ϕ∗ = argmin
ϕ

Lp(θ
∗(ϕ);Dv),

s.t. θ∗(ϕ) = argmin
θ

Lt(θ, ϕ),
(11)

where Lt(θ, ϕ) is the objective in eq. (2), and Lp(θ
∗(ϕ);Dv) is the primary task loss of the task

learning model on the validation dataset. The lower optimization is easy, we can directly obtain the
gradient of θ as ∇θLt(θ, ϕ). However, in the upper optimization, Lp(θ

∗(ϕ);Dv) directly relies on θ
instead of ϕ. Assuming that the Hessian ∇2

θLt(θ
∗(ϕ), ϕ) is positive-definite, we can use the implicit

theorem to obtain its implicit gradient ∇ϕLp(θ
∗(ϕ);Dv),

∇ϕLp(θ
∗(ϕ);Dv) = −∇θLp · (∇2

θLt)
−1 · ∇ϕ∇θLt|(ϕ,θ∗(ϕ)). (12)

Detailed derivation can be found in Appendix 1. Since the inverse of the Hessian is often intractable,
we follow [24] to use truncated Neumann series to approximate it. (∇2

θLt)
−1 ≈

∑n
i=0(I −∇2

θLt)
i,

and n is fixed to 3 in all our experiments. Thus, the complete implicit gradient is approximated as:

∇ϕLp(θ
∗(ϕ);Dv) ≈ −∇θLp ·

n∑
i=0

(I −∇2
θLt)

i · ∇ϕ∇θLt. (13)

Instance regularization. In the upper optimization, we additionally introduce an instance regulariza-
tion for the parameterized label yg,j in eq. (8) as follows, to prevent generation mode collapse.

Lreg(ϕ;Dg) =

{ ∑|Dg|
j=1

∑
j′ ̸=j cos(yg,j , yg,j′) categorical

−
∑|Dg|

j=1 ȳg,j log(ȳg,j) numerical
(14)

where if the generated label is categorical, we expect that the cosine similarity of different generated
labels is small. This regularization means we expect that the generated label can keep its instance-
level uniqueness, preventing the generated labels of all the generated features from being the same.
Similarly, if the generated label is numerical, since it is 1-dimension, we use the entropy regularization
to achieve this goal, where ȳg,j = eyg,j/

∑|Dg|
j′=1 e

yg,j′ . Then in the upper optimization, the gradient
of ϕ is the sum of the implicit gradient and explicit gradient from the regularization:

∇ϕ = ∇ϕLp(θ
∗(ϕ);Dv) +∇ϕLreg(ϕ;Dg). (15)

6



Now the gradients of θ and ϕ are obtained, and we follow previous works [1, 11] to alternatingly
update θ and ϕ. The update loop will continue until convergence, where in each loop we first update
θ for N times, and then update ϕ using the upper gradient eq. (15) as shown in Figure 1. N is the
interval between two upper updates. We summarize the complete algorithm in Appendix 2, where
we do not require an additional validation dataset Dv to calculate the upper objective but reuse the
training primary set Dp as done in [13, 14].

4 Experiments

4.1 Experimental Setup

Task and Dataset. We conduct our experiments on two scenarios to validate the generalization
ability of our method. One is the most widely studied scenario in previous auxiliary learning works,
where the auxiliary tasks share the same input as the primary task (share input). The other one is
that the inputs of the primary and auxiliary tasks are different (different input). In the Share Input
setting, (i) CUB [25]: we follow previous works [1, 11] to use the bird visual attribute classification
(e.g., whether the bird has white belly) to help the bird species classification primary task, where both
the auxiliary and primary labels are categorical. (ii) CIFAR100 [26]: it is a widely adopted image
classification dataset, where there are totally 100 categories. Additionally, each image has a coarse
class, e.g., a car belongs to the “vehicles 1” coarse class. We use the coarse classification as the
auxiliary task to help the 100-classification primary task. (iii) Besides the classification problem, we
also focus on the regression problem, where we follow previous works [11, 12] to regard the rating
prediction in recommender system as the primary task, and the CTR prediction as the auxiliary task.
The primary task is regression and the auxiliary task is binary classification. We choose the widely
used Amazon Toys and Movies [27] datasets, where we use the user ID, item ID and item category
as the input data. In the Different Input setting, (i) CIFAR10-100 is a setting where our primary
task is the CIFAR10 classification problem, and the auxiliary task is the CIFAR100 classification
problem. (ii) Pet-CUB is a similar setting where our primary task is fine-grained pet classification
on the Pet [28] dataset, while our auxiliary task is the bird species classification in the previously
mentioned CUB dataset. More detailed data information is presented in Appendix 4.

Baselines. We compare with SOTA auxiliary learning methods, including the reweighing methods
and the auxiliary task generation method. Single task learning(STL) is a natural baseline where we
only train on the primary task. Equal is a baseline where we assign equal weights 1.0 to all the tasks.
Uncert [18] is a dynamic weighting method for multi-task learning based on task uncertainty. GCS [9]
and AuxL [1] dynamically reweight the auxiliary losses, and JTDS [11] not only reweighs the tasks
but also each data sample within each task. MAXL [1] is a method that automatically generates
a fine-grained auxiliary task for the primary classification task. We provide detailed differences
between our work and the baselines in Appendix 3.1.

Implementation details. In CUB dataset, we respectively adopt ResNet18 [29] and ResNet50 as
our backbone. In CIFAR100, we respectively adopt ResNet18 and a 4-layer ConvNet composed of
Convolution, Batch Normaliztion and Relu layers as our backbone. In Amazon Toys and Movies,
we adopt AutoINT [30] as the backbone. In CIFAR10-100, the backbone is the 4-layer ConvNet
and in Pet-CUB the backbone is ResNet18. For the head of each task, we adopt Multi-Layer-
Perceptron(MLP) whose layer is searched from {1, 2}. In the generator, the embedding dimension
mn is searched from {32, 64}, and the layer number of the MLP is searched from {2, 3, 4}. More
details are presented in Appendix 4.

4.2 Experimental Results

4.2.1 Method Performance

Main results. Table 1 presents the overall experimental results, showing that our proposed method
consistently outperforms existing methods on the diversified auxiliary learning scenarios. During
training in the CUB dataset and Pet-CUB dataset, different from [11] that does not use the learning
rate scheduler, we found that applying a learning rate scheduler to all the baselines can obtain better
or at least on-par performance. Therefore, we report the results with the scheduler. From the results,
we have the following observations. (i) As expected, our proposed method brings benefits for the
primary task when the original manually collected auxiliary data and task are unhelpful. For example,
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Table 1: Overall performance. We report the results over 5 random seeds. Note that JTDS cannot
handle the different input scenarios and MAXL cannot generate auxiliary tasks for the primary
regression task. The metric for classification is accuracy(Acc) and the metric for the rating regression
in recommendation is RMSE. Higher accuracy and lower RMSE indicate better results.

Dataset CUB CIFAR100 Toys Movies CIFAR10-100 Pet-CUB
Metric Acc(%)↑ Acc(%)↑ RMSE↓ RMSE↓ Acc(%)↑ Acc(%)↑
Backbone ResNet18 ResNet50 ConvNet ResNet18 AutoINT AutoINT ConvNet ResNet18
STL 76.160.70 80.460.42 50.350.50 55.790.22 0.91880.0005 1.04560.0008 79.350.41 69.470.16

Equal 74.250.17 78.280.23 49.560.31 56.420.05 0.92130.0004 1.04590.0009 78.990.42 67.150.41

Uncert 73.940.20 77.030.24 48.900.10 56.950.31 0.91710.0009 1.04950.0018 80.130.17 63.580.13

GCS 74.110.29 78.540.54 49.260.35 56.570.21 0.92240.0003 1.04590.0018 79.590.52 67.310.89

AuxL 75.390.59 78.000.55 49.390.82 57.140.25 0.91860.0005 1.04830.0019 79.690.41 66.170.37

JTDS 76.500.47 79.340.19 49.000.33 57.280.20 0.91870.0004 1.05040.0023 - -
MAXL 75.790.45 78.480.88 49.710.37 56.320.23 - - 80.020.51 68.480.85

ours 77.750.27 81.730.20 50.940.05 57.840.20 0.91530.0004 1.04260.0009 80.640.12 70.480.28

Table 2: Acc(%) on CUB Fewshot Experiments with ResNet50.

Method STL Equal Uncert GCS AuxL JTDS MAXL ours
5 shot 44.991.15 45.370.61 45.630.08 45.680.67 45.071.31 46.130.89 45.471.06 52.331.36

10 shot 63.250.68 60.580.81 59.300.55 60.810.74 63.790.11 63.390.18 61.700.10 67.680.33

in the CUB dataset with ResNet50 backbone, Movies, and Pet-CUB, the three scenarios, all the
methods that utilize auxiliary tasks perform worse than the STL baseline, indicating that the manually
chosen auxiliary data and tasks are not beneficial to the primary task. This phenomenon is also
observed in previous works [1, 12]. However, our proposed method can utilize the information in the
originally harmful auxiliary task to generate new and beneficial auxiliary data and task, so that the
model performance can be significantly improved. The ability of our method to convert originally
harmful auxiliary labels into beneficial forms is further validated in Appendix 5.2. Although MAXL
generates a new fine-grained classification task for the primary task, it brings no improvement in
these settings. This is possibly because it requires a hierarchical dataset structure in the primary
task. However, in the CUB and Pet-CUB setting, the primary task itself is a fine-grained image
classification problem and a more fine-grained meanwhile beneficial task is hard to be automatically
generated. Additionally, it does not consider generating new data during generation. (ii) When the
original auxiliary task is beneficial to the primary task, our proposed method inherits these benefits
and can bring further improvement. For example, in CIFAR100 with ResNet18 as backbone and
CIFAR10-100 settings, almost all the methods that utilize the auxiliary information outperform the
STL baseline, and our proposed method outperforms all the existing auxiliary methods. (iii) Whether
the auxiliary data and task are beneficial to the primary task depends on the backbone we choose.
In the CIFAR100 dataset, when we the use ConvNet backbone, the original auxiliary data and tasks
are harmful because all the existing auxiliary methods perform worse than STL, but when we use
ResNet18 as the backbone, the auxiliary data and tasks are beneficial.

Fewshot results. Since previous works [1, 11] indicate auxiliary learning is more effective when
the data of the primary task is inadequate, we conduct experiments on CUB where we only use
5/10 shots of each category for the primary task in Table 2. We can see that when the data of the
primary task is 5 shot, all methods that utilize the auxiliary task perform better than STL, while
in Table 1, when the primary task has full data, the auxiliary data and task are harmful, indicating
whether the auxiliary information is beneficial or not is related to the primary dataset scale. Among
all the auxiliary learning methods, our proposed method brings the most significant improvement.
Compared to the full dataset setting, the improvement of our method becomes more significant in the
fewshot setting. The improvement largely results from that we not only generate new tasks but also
new data. The effectiveness of generating new data is further validated in Appendix 5.3.

4.2.2 Ablation Studies

To further understand how our proposed method works, we provide the following ablation studies.
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Table 3: Generation visualization. The first two rows from Pet-CUB and the last two rows are from
CUB. The first and second columns are the images from the primary and auxiliary tasks used to
generate new feature and label. The third column is the generated label, where the x-axis represents
the category and the y-axis represents the probability of the generated feature belonging to this
category. In the fourth column, we visualize the images with maximum probabilities (largest peaks)
in the generated label, where besides the image from the peak guided by the bias term, we visualize
images from the largest 2 peaks among the small peaks.

#Image-P #Image-Aux #G-Label #Max-Prob Images

Generation visualization. We visualize the generation process in Table 3. The first two rows are
from the Pet-CUB dataset in the Different Input setting, and the last two rows are from the CUB
dataset in the Share Input setting. In Pet-CUB, we can see the generated label has one obvious
peak from the label bias term, which represents the original category of the primary image. There
are also some other small peaks. Specifically, from the first row, we can see that when our feature
generator combines a white cat and a yellow-and-black bird, the label generator thinks that the label
of the generated feature has the maximum probability of being the original white cat category, the
second largest probability of being the yellow-and-black cat category and then a similar color dog.
The pattern in the second row is similar to the first row, the texture and color of the bird are combined
with the black cat, so that the label generator thinks the generated feature should first belong to the
original black cat, then the brown cat with stripes from the bird, and then a similar color dog. In CUB,
the generated label has two obvious peaks, which represent the two categories of the primary and
auxiliary images. Also, there are some other small peaks, we can see that the images from the small
peaks are similar to the primary and auxiliary images, which have reasonable semantic meanings.

Effectiveness of the framework design. Our whole framework contains the generator and the
optimization strategy. We validate their effectiveness in Table 4. To make the generator expressive,
we incorporate nonlinear terms in the generator, and we also incorporate the label bias term in the
label generator. To optimize the generator, we propose the bi-level optimization strategy with instance
regularization in the upper update. We respectively remove each of these components and observe
performance degradation, where w/o F-nonlinear, w/o L-nonlinear, w/o L-bias, w/o bi-level and w/o
instance reg respectively represents the variant where we remove the feature nonlinear term, label
nonlinear term, label bias term, the overall upper update, and the instance regularization. We find that
the non-linear terms indeed help to generate more beneficial data and tasks by making the generator
more expressive. Also, the instance regularization is very important in the bi-level optimization.
Furthermore, we observe label generation mode collapse without the regularization in Appendix 5.4.

Comparison with MixUp During the generation visualization, we find that in the CUB setting, the
generation process behaves like MixUp where the inputs are combined in a linear way and the labels
are also combined in a linear way. Therefore, we compare our proposed method with different MixUp
methods in Table 5. MixUp [31] means we directly utilize the data and labels generated by MixUp
as auxiliary tasks. F-MixUp [32] means the linear combination does not happen in the input, but
in the manifold feature space. Auto-Mix/Auto-F-Mix means the linear weight of MixUp/F-MixUp
is learned automatically with the bi-level optimization, and the task weights are also learnable, i.e,
utilizing learnable MixUp/F-MixUp to replace our joint generator. We can see that our proposed
method outperforms these MixUp methods. The reasons are quite obvious, as shown in Table 3, our
proposed method not only has the two peaks in MixUp, but also other semantically reasonable small
peaks. Compared to MixUp, the advantages of our proposed method are three-fold. (i) Our method

9



Table 4: Effectiveness of framework designs. The first three rows explore the effectiveness of the
generator components, while the rest show the effectiveness of the training strategies.

Dataset CUB Pet-CUB Toys
Metric Acc(%)↑ Acc(%)↑ RMSE↓
Backbone ResNet50 ResNet18 AutoINT
w/o F-nonlinear 81.220.27 67.760.17 0.91950.0021

w/o L-nonlinear 80.960.37 66.581.12 0.92130.0026

w/o L-bias 79.280.34 69.360.37 0.92040.0011

w/o bi-level 80.320.42 68.530.49 0.91630.0008

w/o instance reg 80.440.34 67.530.95 0.91740.0012

complete 81.730.20 70.480.28 0.91530.0004

can not only combine information from the label of the same task but also label from other tasks. (ii)
Our method can not only model linear relations in generation but also non-linear relations. (iii) Our
method can handle the Different Input scenario, while MixUp cannot.

To further show the advantage of our proposed generation compared to MixUp, we apply Auto-F-Mix
on top of auxiliary learning methods (AuxL, JTDS, MAXL) and the experimental results are presented
in Table 6. The results show that both directly combining auxiliary weighting methods(AuxL, JTDS)
with Auto-F-Mix and combining the current auxiliary generation method (MAXL) with Auto-F-mix
are not as effective as our method, indicating the advantage of our proposed joint generation.

Table 5: Comparison with MixUp Methods. Note that MixUp cannot be applied to the recommenda-
tion scenario where the input are categorical features.

Dataset CUB Movies
Metric Acc(%)↑ RMSE↓
Backbone ResNet18 AutoINT
MixUp 75.880.50 -
Auto-Mix 76.530.36 -
F-MixUp 75.330.67 1.04600.0023

Auto-F-Mix 76.880.52 1.04640.0003

ours 77.750.27 1.04260.0009

Table 6: Comparison to the combination of Auto-F-Mix and current auxiliary learning methods. We
denote Auto-F-Mix as AFM.

Dataset CUB CUB-5shot Toys
Metric Acc(%)↑ Acc(%)↑ RMSE↓
Backbone ResNet50 ResNet50 AutoINT
AFM 80.300.57 46.970.95 0.91870.0003

AuxL+AFM 79.701.07 47.841.25 0.91950.0011

MAXL+AFM 80.760.38 47.960.89 -
JTDS+AFM 80.520.90 48.140.87 0.91890.0013

ours 81.730.20 52.331.36 0.91530.0004

5 Conclusion

In this paper, we propose to jointly generate beneficial auxiliary data and tasks for auxiliary learning,
so that the primary task can still obtain benefits when the manually collected auxiliary data and
tasks are unhelpful. We propose the DTG-AuxL framework with a joint generator and a bi-level
optimization strategy, which can be applied in various auxiliary learning scenarios. Future works like
designing more adaptive generators and more efficient bi-level optimization algorithms can further
improve the generation.
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